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Abstract 

 

Active music listening has emerged as a study field that aims to enable listeners to interactively control music. 
Most of active music listening systems aim to control music aspects such as playback, equalization, browsing, 
and retrieval, but few of them aim to control expressive aspects of music to convey emotions. In this study our 
aim is to enrich the music listening experience by allowing listeners to control expressive parameters in music 
performances using their perceived emotional state, as detected from their brain activity. We obtain electro-
encephalogram (EEG) data using a low-cost EEG device and then map this information into a coordinate in the 
emotional arousal-valence plane. The resulting coordinate is used to apply expressive transformations to mu-
sic performances in real time by tuning different performance parameters in the KTH Director Musices rule sys-
tem. Preliminary results show that the emotional state of a person can be used to trigger meaningful expres-
sive music performance transformations.  
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1. Introduction  

In recent years, active music listening has 
emerged as a study field that aims to enable 
listeners to interactively control music. While 
most of the work in this area has focused on 
control music aspects such as playback, equali-
zation, browsing and retrieval, there have been 
few attempts to controlling expressive aspects 
of music performance.  

On the other hand, electroencephalogram 
(EEG) systems provide useful information 
about human brain activity and are becoming 
increasingly available outside the medical do-
main. Similarly to the information provided by 
other physiological sensors, Brain-Computer 
Interfaces (BCI) information can be used as a 
source for interpreting a person’s emotions 
and intentions. 

In this paper we present an approach to en-
rich the music listening experience by allowing 
listeners to control expressive parameters in 

music performances using their perceived 
emotional state, as detected by a bran-
computer interface. We obtain brain activity 
data using a low-cost EEG device and map this 
information into a coordinate in the emotional 
arousal-valence plane. The resulting coordi-
nate is used to apply expressive transfor-
mations to music performances in real time by 
tuning different performance parameters in 
the KTH Director Musices rule system (Friberg, 
2006).  

2. Background 

The study of users' interaction with multimedia 
computer systems has increased in recent 
years. Regarding music, Goto (Goto, 2007) 
classify systems based on which actions a lis-
tener is able to control. He classifies music sys-
tems into playback, touch-up (small changes 
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over audio signal, e.g. equalization), retrieval, 
and browsing. A related research line is the 
development of systems for automatic expres-
sive accompaniment capable of following the 
soloist performance expression and/or inten-
tion in a real-time basis. Examples of such sys-
tems are the ones proposed by Cont et al. 
(Cont, 2012) and Hidaka et al. (Hidaka, 1995). 
Both propose systems able to follow the inten-
tion of the soloist based on the extraction of 
intention parameters (excitement, tension, 
emphasis on chord, chord substitution, and 
theme reprise). However, none of the above 
mentioned systems measure the listen-
er/soloist intention/emotion directly from 
brain activity.  

In this paper we propose a system, which 
allows listeners to control expressive parame-
ters in music performances using their per-
ceived emotional state, as detected from their 
brain activity. From the listener’s EEG data we 
compute emotional descriptors (i.e. arousal 
and valence levels), which trigger expressive 
transformations to music performances in real 
time. The proposed system is divided in two 
parts: a real-time system able to detect listen-
ers’ emotional state from their EEG data, and a 
real-time expressive music performance sys-
tem capable of adapting the expressive pa-
rameters of music based on the detected lis-
teners’ emotion. 

2.1. Emotion detection 

 Emotion detection studies have explored 
methods using voice and facial expression in-
formation (K. Takahashi, 2004). Other ap-
proaches have used skin conductance, heart 
rate, and pupil dilation (Parala et.al, 2000). 
However, the quality and availability of brain 
computer interfaces has increased in recent 
years, making easier to study emotion using 
brain activity information. Different methods 
have been proposed to recognize emotions 
from EEG signals, e.g. (Chopin, 2000; 
Takahashi, 2004; Lin, 2010), training classifiers 
and applying different machine learning tech-
niques and methods. Ramirez and 
Vamvakuosis (Ramirez, 2012) propose a meth-
od based on mapping EEG activity into the bi-
dimensional arousal/valence plane of emotions 

(Eerola, 2010).  By measuring the alpha and 
beta activity on the prefrontal lobe, they ob-
tain indicators for both arousal and valence. 
The computed values may be used to classify 
emotions such as happiness, anger, sadness, 
and calm.   

2.2. Active music listening 

Interactive performance systems have been 
developed in order to make possible for a lis-
tener to control music based on the conductor-
orchestra paradigm. This is the case of the 
work of Fabiani (Fabiani, 2011) who use ges-
tures to control performance. Gesture parame-
ters are mapped to performance parameters 
adapting the four levels of abstrac-
tion/complexity proposed by Camurry et al. 
(Camurry, 2001). This level of abstraction 
range from low level parameters (physical lev-
el) such as audio signal, to high level parame-
ters (semantic descriptors) such as emotions. 
Thus, gesture analysis is done from low to high 
level parameters, whereas synthesis is done 
from high to low level parameters. The control 
of mid and low level parameters of the per-
formance is carried out using the KTH rule sys-
tem by Fidberg (Friberg, 2006) 

2.3. Expressive music performance  

The study of music performance investigates 
the deviations introduced to the score by a 
skilled musician in order to add expression and 
convey emotions. Part of this research consists 
in finding rules to model these performance 
modifications that musicians use. Such is the 
case of the KTH rule system for music perfor-
mance, which consists of a set of about 30 
rules that control different aspects of expres-
sive performance. These set of rules are the 
result of research initiated by Sundberg 
(Sundberg, 1983; Friberg, 1991; Sundberg, 
1993). The rules affect various parameters 
(timing, sound level, articulation) and may be 
used to generate expressive musical perfor-
mances. The magnitude of each rule is con-
trolled by a parameter “k”. Different combina-
tions of k parameters levels model different 
performance styles, stylistic conventions or 
emotional intention. The result is a symbolic 
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representation that may be used to control a 
synthesizer. A real-time based implementation 
of the KTH system is the pDM (Pure Data im-
plementation of Director Musices Profram) by 
Friberg (Friberg, 2006). Friberg implements an 
arousal/valence space control, defining a set of 
k values for the emotion at each quadrant of 
the space. Seven rules plus overall tempo and 
sound level are combined in such a way that 
they clearly convey the intended expression of 
each quadrant based on the research by Bresin 
et al. (Bresin, 2000) and Juslin (Juslin, 2001). 
Intermediate values for "k" are interpolated 
when moving across the space.  

3. Methodology 

Our proposed approach to real-time EEG-
based emotional expressive performance con-
trol is depicted in Fig. 1. First, we detect EEG 
activity using the Emotiv Epoch headset. We 
base the emotion detection on the approach 
by Ramirez and Vamvakousis (Ramirez, 2012). 
We measure the EEG signal using electrodes 
AF3, AF4, F3, and F4, which are located on the 
prefrontal cortex. We use these electrodes be-
cause it has been found that the prefrontal 
lobe regulates emotion and deals with con-
scious experience. 

 

 

Figure 1. Theoretical frame work for expressive 
music control based on EEG arousal - valence 
detection. 

We model emotion using the arousal-
valence plane, a two dimensional emotion 
model which proposes that affective states 
arise from two neurological systems: arousal 
related to activation and deactivation, and va-
lence related to pleasure and displeasure. In 
this paper we are interested in characterizing 
four different emotions: happiness, anger, re-
laxation, and sadness. As depicted in Figure 1, 

each studied emotion belongs to a different 
quadrant in the arousal valence plane: happi-
ness is characterized by high arousal and high 
valence, anger by high arousal and low valence, 
relaxation by low arousal and high valence, 
and finally sadness by low arousal and low va-
lence. 

3.1 Signal reprocessing 

Alpha and Beta waves are the most often used 
frequency bands for emotion detection. Alpha 
waves are dominant in relaxed awake states of 
mind. Conversely Beta waves are used as an 
indicator of excited mind states. Thus, the first 
step in the signal preprocessing is to use a 
band pass filter in order to split up the signal in 
order to get the frequencies of interest, which 
are in the range of 8-12 Hz for alpha waves, 
and 12-30 Hz for beta waves.  

After filtering the signal we calculate the 
power of each alpha and beta bands using the 
logarithmic power representation proposed by 
Aspiras & Asari (Aspiras et al., 2011).  The 
power of each frequency band is computed by: 

 

 
Where  is the magnitude of the frequency 
band f (alpha or beta), and N is the number of 
samples inside a certain window. Hence, we 
are computing the mean of the power of a 
group of N samples in a window and then 
compressing it by calculating the logarithm of 
the summation. 

3.2 Arousal and valence calculation 

After the band power calculation, the arousal 
value is computed from the beta/alpha ratio. 
Valence is calculated based on the asymmetric 
frontal activity hypothesis, where left frontal 
inactivation is linked to a negative emotion, 
whereas right frontal inactivation may be as-
sociated to positive emotions. Thus arousal 
and valence are calculated as follows: 
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where and are respectively 
the beta and alpha logarithmic band power of 
electrodes F3 and F4. 

The values obtained for arousal and valence 
are calculated using sliding windows over the 
signal in order to obtain a more smooth data. It 
is worth noting that there are not absolute lev-
els for the maximum and the minimum values 
for both arousal and valence, as these values 
may differ from subject to subject, and also 
vary over time for the same subject. To over-
come this problem we computing the mean of 
the last five seconds of a 20 second window 
and normalize the values by the maximum and 
minimum of these 20 sec window. This way we 
obtain values that range between minus one 
and one. We consider a window size of 4 sec-
onds with 1 second hop size.  

3.3 Synthesis 

For synthesis we have used a real-time based 
implementation of the KTH group, pDM (Pure 
Data implementation of Director Musices Pro-
gram) (Friberg, 2006). Thus, the coordinate on 
the arousal-valence space is mapped as an in-
put for the pDM activity-valence space expres-
sive control. In our implementation, this con-
trol is adapted in the pDM program, so the co-
ordinates are rotated to fit the ones of the 
arousal valence space. Then the transfor-
mation of each of the seven expressive rules 
takes place by interpolating 11 expressive pa-
rameters between four extreme emotional 
expression values (Bressin and Friberg, 2000). 

3.4 Experiments 

Two types of experiments were performed: a 
first one listening while sitting down and mo-
tionless and the other listening while playing 
(improvising) with a musical instrument. In 
both the aim was to evaluate whether the in-

tended expression of the synthesized music 
corresponds to the emotional state of the user 
as characterized by his/her EEG signal. In both 
experiments subjects sat down in a comforta-
ble chair facing two speakers. Subjects were 
asked to change their emotional state (from 
relaxed/sad to aroused/happy and vice versa). 
Each trial lasted 30 seconds with 10 seconds 
between trials. In experiment one the valence 
is set to a fixed value and the user tries to con-
trol the performance only by changing the 
arousal level. In experiment 2 the expression of 
the performance is dynamically changed be-
tween two extreme values (happy and sad), 
while the user is improvising playing a musical 
instrument. A 2-class classification task is per-
formed for both experiments.  

4. Results 

 The EEG signal and the corresponding calcu-
lated normalized arousal is shown in Figure 2. 
Vertical lines delimit de beginning and ending 
of each subtrial, and are labeled as “up” for 
high arousal and “down” for low arousal. The 
horizontal line represents the arousal average 
of each class segment. It can be seen how the 
calculated arousal corresponds to the intended 
emotion of the subject, and how the 2 classes 
can be separated by a horizontal threshold. 
However, further work should be done in order 
to obtain a smoother signal. 

 
Figure 2. A subject’s EEG signal (top) and calcu-
lated arousal (bottom). Vertical lines delimit 
each subtrial for high arousal (1

st
 and 4

th
 subtri-

als) and low arousal (2
nd

 and 3
rd

 subtrials). Hori-
zontal line represents the average of each class 
segment.  
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Two classifiers, Linear Discriminant Analy-
sis and Support Vector Machines, are evaluat-
ed to classify the intended emotions, using 10 
cross fold validation. Initial results are obtained 
using the LDA and SVM implementations of 
the OpenVibe library (OpenVibe, 2010). Our 
aim was to quantify in which degree a classifier 
was able to separate the two intended emo-
tions from the arousal/valence recorded data. 
For high-versus-low arousal classification we 
obtained a 77.23\% for active listening without 
playing, and 65.86\% for active listening when 
playing an instrument (improvising) along the 
synthesized expressive track, using SVM with 
radial basis kernel function. Results were ob-
tained using 10-fold cross validation. 

Initial results suggest that the EEG signals 
contain sufficient information to classify the 
expressive intention between happy and sad 
classes. However, the accuracy decreases, as 
expected, when playing an instrument. This 
may be due to the fact that the action of play-
ing requires attention, thus, the alpha activity 
may remain low and beta may remain high 

5. Conclusions 

In this paper we have explored an approach to 
active music listening. We have implemented a 
system for controlling in real-time the expres-
sive aspects of a musical piece, by means of 
the emotional state detected from the EEG 
signal of a user. We have perform experiments 
in two different settings: a first one where the 
user tries to control the performance only by 
changing the arousal level, and a second one 
where the performance is dynamically 
changed between two extreme values (happy 
and sad), while the user is improvising playing 
a musical instrument. We applied machine 
learning techniques (LDA and SVM) to perform 
a two class classification task between two 
emotional states (happy and sad).  Initial re-
sults, in the first set where the subject was sit-
ting still, suggest that EEG data contains suffi-
cient information to distinguish between the 
two classes. 
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